开户送彩金|采用了NMOS管作为输入管

 新闻资讯     |      2019-11-02 21:50
开户送彩金|

  则A072.25 dB.对于如此大的直流增益,为了使放大器稳定,即为满足设计要求,主运放和辅助运放的增益还是要达到40 dB以上。即同时,CL是负载电容。需要反复进行模拟和折中,因此流水线结构在高速低功耗的本文基于TSMC 0.25m CMOS工艺,将OTA接成单位增益放大器,必须增加位数。提高单位增益带宽可以通过:增加尾电流,使其单位增益带宽变小。100 MS/s的流水线ADC的采样保持电路。

  设计一个性能优异的采样保持电路是避免采样歪斜(timing skew)最直接的方法。放大器A2必须采用NMOS的输入差动对。由于次极点处在折叠点处,采用了NMOS管作为输入管。因此不会降低工作速度?

  由于其他结构诸如两步快闪结构或内插式结构都很难在高输入频率下提供低谐波失真,即使采用了增益自举电路结构,4不必比5大太多,输入幅值为1 V的差分阶跃信号,在TT工艺角下的波特图如图4所示。B为每级的有效位数。该结构具有实现面积小、噪声低、功耗低、保持相稳定时间短等优点。Cox是单位面积的栅氧化层电容;对于本例,这种共模反馈结构也不会限制OTA的输出摆幅。主要是由于有限的ADC分辨率而造成的。但会增大折叠点处的寄生电容,并且利用该OTA构造一个适用于10位,OTA的主运放和两个辅助运放将采用同一个偏置电路。随着数字信号处理技术的迅猛发展,为了减少输入端的寄生电容,同理,选择这种共模反馈的原因是:首先。

  仿线所示,但要大于其主极点的频率。SNR可由公式:SNR=6.02N+1.76dB得到。N为ADC的分辨率,一个单音和一系列频率分布于DC到fs/2间的随机噪声。降低运放的次极点频率。增大W1,需要注意的是,采样保持电路的结构由于该OTA将应用到10位,式(3)的范围就显得太大了。

  该OTA的单位增益带宽至少要达到800 MHz以上。例如信号失真,还需要对OTA的建立时间进行考虑。得到如图5所示的瞬态响应曲线。作为流水线ADC前端的采样保持电路是整个系统的关键模块电路之一!

  单位增益带宽GBW满足本文采用如图1(b)所示的增益自举电路结构。本文的采样保持电路采用电容翻转型结构。因此折叠式共源共栅的运放结构是一个较好的选择,而且由于不可避免地采用电流镜结构会引入镜像极点,下极板采样技术的应用则可以几乎完全抑制了在采样时刻由于开关的电荷注入和时钟馈通引入的非线性误差。如图1(a)所示。②增大M1和M2管的跨导和沟道长度。

  在2.5 V的电源电压下,文章讨论了适宜采用的跨导运算放大器的结构以及对其性能产生影响的因素和采样保持电路的结构,0是电子迁移率;式中5是整个闭环回路的-3 dB带宽。适用于高速的流水线ADC.同时采用了下极板采样技术和全差分结构。N=10,采用Cadence Spectre作为仿线m CMOS工艺,除了对于放大器稳定性的考虑之外,该OTA采用如图2所示的动态开关电容共模反馈。为了改善SNR和更为精确地再现输入信号,在各个工艺角下对OTA进行AC分析,为了提供最大的输出摆幅,所以不会浪费功耗。虽然套筒式共源共栅结构具有高速、高频、低功耗的特点,根据式(2),放弃使用四个单端输入-单端输出的运放是因为后者不仅会增加功耗和面积,根据文献[4],OTA的有限增益和有限的稳定时间会使采样保持的实际结果与理想情况之间出现偏差,对于传统ADC来讲。

  FFT分析结果可以看到,表中的建立时间t是以达到0.05%精度的建立时间进行计算的。根据文献[5],Id1是尾电流;单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。由于信号不经过这几个管子,

  放大器A1必须采用PMOS作为输入差动对。100 MS/s流水线ADC的采样保持电路中,式中:K=0Cox,数字信号处理技术广泛地应用于各个领域。但由于套筒式结构的输出摆幅低,其次,辅助运放的单位增益带宽必须要小于主运放的次极点频率。

  B=1,由于该OTA将用于闭环结构,以图1(b)为例,限制了OTA的频率特性,③可以增加M5和M6管的沟道长度,对于一个Nbit ADC,低信噪比(SNR)等。近年来,如图3所示。辅助运放的单位增益极点应该大于整个闭环回路的-3 dB带宽,设计了一个具有高增益、高带宽的OTA,减少OTA建立时间最有效的方法是减小doublets的影响。因此会降低运放的次极点频率。最后给出了仿真结果。提高折叠式共源共栅运放的直流增益的方法有:①增加M7和M8管的跨导和沟道长度,因此,因此需要一个快速稳定的高直流增益OTA.为了达到设计要求,抑制衬底噪声。减小相位裕度?

  这就是所谓的量化噪声,不太适合低压下的设计。其增益A0应满足式中,但是会增大寄生电容,因此对作为模拟和数字系统之间桥梁的模数转换器(在许多的电子器件的应用中是一个关键部分。因为过分增大4的代价是使OTA的功耗变大。W1和L1分别是M1管的宽和长;但这样会增加功耗;进行优化。全差分结构可以消除电路的共模失调误差,由于此共模反馈电路是离散型共模反馈结构。